报告题目:基于功能磁共振影像的个体化脑功能网络分析和应用
报告摘要
脑作为一个精细、复杂、高效的系统,控制着人的认知和行为。充分认识和解析脑的功能组织结构是脑认知和脑疾病研究的必要前提。功能磁共振影像(functional MRI, fMRI)为研究脑的功能连接模式和功能组织结构提供了一种不可或缺的工具。既往的脑功能影像研究普遍基于组水平的脑图谱/脑功能网络进行分析。近年来,越来越多的研究表明,同一脑功能单元在不同个体之间的分布模式具有显著的差异,且这些差异和认知功能、脑发育和脑疾病具有显著的相关性。在此报告中,李宏明博士会介绍他们提出的基于机器学习和深度学习的个体化脑功能网络建模方法,以及个体化脑功能网络建模在脑发育和脑疾病等研究中的应用。
1.Li, Hongming, Theodore D. Satterthwaite, and Yong Fan. "Large-scale sparse functional networks from resting state fMRI." Neuroimage 156 (2017): 1-13.
2.Li, Hongming, Xiaofeng Zhu, and Yong Fan. "Identification of multi-scale hierarchical brain functional networks using deep matrix factorization." International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018.
3.Li, Hongming, and Yong Fan. "Identification of temporal transition of functional states using recurrent neural networks from functional MRI." International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018.
4.Li, Hongming, Theodore D. Satterthwaite, and Yong Fan. "Brain age prediction based on resting-state functional connectivity patterns using convolutional neural networks." 2018 IEEE 15th international symposium on biomedical imaging (isbi 2018).
5.Li, Hongming, and Yong Fan. "Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks." NeuroImage 202 (2019): 116059.
6.Cui, Zaixu, Hongming Li, Cedric H. Xia, et al. "Individual variation in functional topography of association networks in youth." Neuron 106.2 (2020): 340-353.
嘉宾简介
李宏明,博士,目前就职于宾夕法尼亚大学医学院,担任Senior research investigator职位,主要研究方向为面向医学影像分析的人工智能方法研究及其在脑影像和肿瘤影像中的应用。近年来的研究工作集中于脑影像模式分析和影像组学研究,相关研究成果发表在Alzheimer’s & Dementia, NeuroImage, Radiotherapy and Oncology等重要期刊,以及领域重要国际会议MICCAI和ISBI等。
特别感谢本次Webinar主要组织者:
王连生(厦门大学)